1N4148-K

SILICON EPITAXIAL PLANAR DIODE

Fast switching diode

This diode is also available in MiniMELF case with the type designation LL4148.

Glass Case DO-35 (K)
Dimensions in mm

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Value	Unit
Peak Reverse Voltage	V_{RM}	100	V
Reverse Voltage	V_{R}	75	V
Average Rectified Forward Current	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	200	mA
Non-repetitive Peak Forward Surge Currentat $\mathrm{t}=1 \mathrm{~s}$ at $\mathrm{t}=1 \mathrm{~ms}$ at $=1 \mu \mathrm{~s}$	$\mathrm{I}_{\mathrm{FSM}}$	0.5	
Power Dissipation		1	A
Junction Temperature	$\mathrm{P}_{\text {tot }}$	$500{ }^{1)}$	mW
Storage Temperature Range	T_{j}	200	${ }^{\circ} \mathrm{C}$

${ }^{1)}$ Valid provided that leads at a distance of 8 mm from case are kept at ambient temperature.

Characteristics at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Max.	Unit
Forward Voltage at $I_{F}=10 \mathrm{~mA}$	V_{F}	-	1	V
$\begin{aligned} & \text { Leakage Current } \\ & \text { at } V_{R}=20 \mathrm{~V} \\ & \text { at } \mathrm{V}_{R}=75 \mathrm{~V} \\ & \text { at } \mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{R}} \\ & \mathrm{I}_{\mathrm{R}} \\ & \mathrm{I}_{\mathrm{l}} \end{aligned}$	-	$\begin{gathered} 200 \\ 5 \\ 50 \\ \hline \end{gathered}$	nA $\mu \mathrm{A}$ $\mu \mathrm{A}$
Reverse Breakdown Voltage at $I_{R}=100 \mu \mathrm{~A}$ at $\mathrm{I}_{\mathrm{R}}=5 \mu \mathrm{~A}$	$V_{\text {(BR)R }}$ $V_{\text {(BR)R }}$	$\begin{gathered} 100 \\ 75 \end{gathered}$	-	$\begin{aligned} & V \\ & V \end{aligned}$
Capacitance at $\mathrm{V}_{\mathrm{F}}=\mathrm{V}_{\mathrm{R}}=0$	$\mathrm{C}_{\text {tot }}$	-	4	pF
Voltage Rise when Switching ON tested with 50 mA Forward Pulses $\mathrm{tp}=0.1 \mathrm{~s}$, Rise Time $<30 \mathrm{~ns}, \mathrm{fp}=5$ to 100 KHz	V_{fr}	-	2.5	V
Reverse Recovery Time from $I_{F}=10 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{R}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	$t_{\text {rr }}$	-	4	ns
Thermal Resistance Junction to Ambient Air	$\mathrm{R}_{\text {thA }}$	-	$0.35{ }^{1)}$	K/mW
Rectification Efficiency at $\mathrm{f}=100 \mathrm{MHz}, \mathrm{V}_{\mathrm{RF}}=2 \mathrm{~V}$	η_{v}	0.45	-	-

${ }^{1)}$ Valid provided that leads at a distance of 8 mm from case are kept at ambient temperature.

Rectification Efficiency Measurement Circuit

